
This document contains information that is proprietary to MIPS Technologies, Inc.

MIPS Technologies, Inc. reserves the right to change any products described herein to
improve the function or design. MIPS Technolgies, Inc. does not assume any liability aris-
ing out of the application or use of any product or circuit described herein; neither does it
convey any license under patent rights nor imply the rights of others.

Copyright 1993 by MIPS Technologies, Inc. All rights reserved. No part of this document
may copied by any means without prior written permission from MIPS Technologies, Inc.

MIPS Technologies Inc.

2011 N Shoreline Blvd

PO Box 7311

Mountain View, CA 94039-7311

MIPS R4400PC/SC Errata, Processor Revision 1.0

February 9, 1994

1

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

Note: Change bars in the left column indicate corrections or changes from the last revision of the
errata.

1. R4400 PC, R4400 SC: The first instruction of the cache error exception handler cannot write to
a general purpose register.

Workaround: The first instruction of the cache error exception handler should be anop.

2. R4400 PC, R4400 SC: The PIdx field of the CP0 register CacheErr, may be loaded with an
undefined value on primary cache data parity errors.

Workaround: When a primary data cache parity error is detected (and a cache error exception is
taken), all possible values of PIdx must be used to check for parity errors in the primary data
cache. In the R4400, with a 16K primary data cache, there are four values for the primary data
cache index that must be checked.

3. R4400 PC, R4400 SC: A parity error on the primary data cache dirty data bit, W, will not be
detected.

Workaround: There is no workaround for this condition.

4. R4400 PC, R4400 SC: The 64bit address space for kernel mode is not correctly decoded.
Addresses that should be reported as address error exceptions may cause tlb refill exceptions
instead (as they will not be correctly decoded as outside the range of kernel mode address space).
The adddress region effected by this is the xkseg region as defined in the MIPS III architecture
(address range0xc000000000000000 - 0xc00000ff7fffffff). This region is
extended to the range0xc000000000000000 - 0xc00000ffffffffff .

Workaround: There is no workaround for this problem - kernel mode may access this expanded
region.

5. R4400 PC, R4400 SC: The 64bit address space for supervisor mode is not correctly decoded.
Addresses that should be reported as address error exceptions, may cause tlb refill exceptions
instead (as they will not be correctly decoded as outside the range of supervisor mode address
space). The address region effected by this is the sseg region as defined in the MIPS III architecture
(address range0xffffffffc0000000 - 0xffffffffdfffffff). The check to make
sure bits 61-32 are all ones is not done. This means the R4400 will permit access to the address
regions shown below in supervisor mode:

0xc0000000c0000000 - 0xc0000000dfffffff
0xc0000001c0000000 - 0xc0000001dfffffff
.
.
0xfffffffdc0000000 - 0xfffffffddfffffff
0xfffffffec0000000 - 0xfffffffedfffffff

Workaround: There is no workaround for this problem - supervisor mode may be able to access
kernel address space. This problem is only present in 64bit supervisor mode.

2

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

6. R4400 PC, R4400 SC: Processors might not function in "lock-step" properly because the timer in CP0 (Count
Register) may not synchronize across multiple processors at reset. As a result, the timers may increment on dif-
ferent clock edges causing the processors to fall out of lock step.

Workaround: Do not use the Count Register as a timer if more than one processor needs to function in lock-step
with each other.

7. R4400PC, R4400SC: Under the following condition, the DADDIU instruction can produce an incorrect result:
 If this instruction generates a result value that would cause an overflow condition to occur (even though this in-
struction does not take an overflow exception) then the result value will be correct in bits 0-31 but bit 31 will be
replicated through bits 32-63 (so it looks like a 32bit sign-extended value). The overflow condition is defined
when the carries out of bits 62 and 63 differ (two’s compliment overflow).

Workaround: There is no workaround for this problem.

8. R4400PC, R4400SC: The R4400 does not take a Reserved Instruction Exception on the "rfe’ instruction. The
R4400 executes a "noop" and kills the following instruction.

Workaround: There is no workaround for this problem.

9. R4400PC, R4400SC: The "dmtc0" and "dmfc0" instructions do not cause a Reserved Instruction Exception in
User or Supervisor mode. These instructions will complete successfully.

Workaround: There is no workaround for this problem.

10. R4400PC, R4400SC: Reduced power mode is not available in the current revision of the R4400. Setting the
RP bit in the Status register has no effect on the operation of the R4400.

11. R4400SC: The R4400 always uses sequential ordering regardless of the state of the mode bit which specifies
subblock or sequential ordering.

12. R4400SC: The TWr2Dly parameter is always 1 more than the number programmed. Thus, the range of
TWr2Dly is 2 to 4 PCycles instead of 1 to 3 PCycles.

Workaround: There is no work around for this problem except taking the bug into account while programming.

13. R4400PC, R4400SC: The decode "c" on the Status pins do not show the status of the processor correctly. De-
code "c" of the Status logic should indicate only "FP ops"; however, "Other Interger ops"are decoded also decoded
as "c". The implications are:
The Status pins cannot be used to get the number of a "FP ops" or "Other Integer ops" executed by the
R4400.When the chip is running "Other Integer Ops" they will be shown at the Status pins as "FP ops" via decode
"c" (even if it never executed a single FP instruction)
The other decodes work properly. The performance information obtained from the remaining deocdes are authen-
tic.

Workaround: There is no workaround for this problem.

14. R4400PC, R4400SC: The processor will not take Cache Error exception due to PTag Parity Error under the
following condition:
 When performing a Hit_Writeback_Inv_D operation on a primary cacheline, with W_Bit=0.
It will invalidate the line, ignoring the error. However, it will take cache-error exception, if the cacheline is incon-
sistent (W_Bit=1).

3

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

Workaround: The effect of this bug is very minimal because, in the worst case, the incorrectly invalidated cache-
line will be refetched, when the data is accessed again.

15. R4400PC, R4400SC: NMI does not clear the TLB Shutdown (TS) Bit in the Status Register (SR[21]).

Workaround: There is no work around for this problem.

16. When a cache-error exception occurs, the ERL bit is set in the status register to indicate the chip is now exe-
cuting at "error level". However, due to this bug the EXL bit in the status register may also be set. This means that
if the processor takes cache-error exception from the "non-exception level", it may return, incorrectly, from the
cache-error exception to "exception level (EXL set)". If a cache-error exception occured when the processor was
at the "exception level (EXL set)" then it will return, correctly, from the cache error exception to the previous "ex-
ception level".

Workaround: The cache-error exception handler needs to determine if the chip was executing at "exception level"
or not, when the cache error exception was taken, and then set the EXL bit in the status register appropriately be-
fore executing the ERET.

17. R4400PC, R4400SC: If an NMI is accepted by the processor when it is in any type of stall, the address of the
instruction in the WB stage is transferred into EPC and the instruction is killed. However, if the stalled instruction
involves a write into the register file, the processor is unable to stop the write. Upon returning from NMI exception
handler, the processor re-executes the killed instruction; thus, causing the write into the same register again. The
extra write into the register might cause an erroneous result, if the instruction uses same register as the source and
the destination.

Workaround: There is no work around for this problem.

18. R4400PC, R4400SC: When data is moved from the Random register to a general purpose register (using
MFC0), the result in the destination register, erroneously, ends up to be one less (for example, if the Random reg-
ister has a value N, the destination register ends up with a value N-1). However, the TLBWR instruction which
uses the value from Random register to index into the TLB-array, gets the value N and thus writes into the correct
TLB-entry at all times.

Workaround: Adjust the destination data of the instruction MFC0, when the source is Random register.

19. R4400PC, R4400SC: The processor, incorrectly, sets the EXL bit in the status register when an exception is
caused by the NMI.

Workaround: There is no work around for this problem.

20. R4400PC, R4400SC: The J and JAL instructions functions incorrectly in certain cases, as described below:

 J or JAL instruction causes the processor to unconditionally jump to an address which is formed by shifting left,
by two bits, the 26 bit target address provided by the instruction; and by concatenating, at the left end, the high
order bits of the address of the delay slot.

 The concatenation of the high order bits of the address of the delay slot means that these instructions can only
cause a jump within the 256Mbyte region where the delay slot instruction is located.

The bug occurs when a J, or JAL instruction falls in any of the 3 words before the last word in a 256Mbyte region
(the words marked j below):

0x0ffffff0 j
0x0ffffff4 j
0x0ffffff8 j
0x0ffffffc
------------------------------------- 256Mbyte region boundary

4

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

0x10000000

or:

0x1ffffff0 j
0x1ffffff4 j
0x1ffffff8 j
0x1ffffffc
------------------------------------- 256Mbyte region boundary
0x20000000
..., etc.

In these cases, the high order bits are taken from the next 256Mbyte region generating a destination address
that is 256Mbytes beyond the address that was intended.

Workaround: When assigning addresses, the case of a jump on the boundary of a 256Mbyte region already
has to be made a special case as it will form a destination address in the next 256Mbyte region (due to the
delay slot already being in the next 256Mbyte region). To workaround this bug, the same address check has
to be performed for jumps(j or jal) within the last 4 words of the 256Mbyte region, instead of just the last word.

21. R4400PC, R4400SC: It is possible for the processor to, erroneously, miss detection of a timer interrupt. A
timer interrupt is signalled when the Count register becomes equal to the Compare register (if timer interrupt
is enabled by the appropriate mode bit). However, if the Count register is read (using mfc0 rx, C0_COUNT)
at the time when it’s value is equal to that of the Compare register, then the read might inhibit the interrupt.

Workaround: If the Count register is only read when setting up a new timer interrupt then no other action is
required. However, if the Count register is read for any other reason, during the period when a valid timer in-
terrupt is expected, then the software needs to check if the Count value that was read is within a few cycles of
the Compare value, in which case the timer interrupt might have been lost.

22. R4400PC, R4400SC: During the power up sequence, the period of TClk and RClk may not be as expected
for at least 1024 MasterClock cycles following the de-assertion of ColdResetB. The above bug is true for all
system interface divisors. Furthermore, if the system interface divisor other than 2 (i.e. 3,4,6 & 8) is used, TClk
and RClk’s rising edge may not align to the rising edge of the MasterClock, as specified.

This may not be a problem for systems using only TClk for the external logic. However, certain systems
like -

1) systems using MasterClock for the external logic
2) system with external PLL which needs to lock with the internal PLL
3) systems with multiple processors operating in lock-step

this bug may cause problems.
Thus, for system with interface divisor set to two, the only violation will be that the TClk and RClk’s period
might not be valid within 64 MasterClock after the ColdResetB is de-asserted.

Workaround:Assert a second ColdResetB after at least 1024 MasterClock cycles from the de-assertion of the
first ColdResetB. ResetB should remain asserted until at least 64 MasterClock cycles following the de-asser-
tion of the second ColdResetB. TClk and RClk will then be valid 64 MasterClock cycles after the de-assertion
of the second ColdResetB and their edge alignment with respect to MasterClock will be as specified. Figure
1a & 1b show the waveforms in more detail. Note that the waveforms in Figure 1b are continuation of the
those in figure 1a.

5

F
ebruary 9, 1994

R
4400 P

C
, R

4400 S
C

 E
rrata, P

rocessor R
evision 1.0

F
igure 1a: P

ow
er-on R

eset or C
old R

eset - W
orkaround for B

ug# 22

MasterClock

VCCOK

ModeClock

ModeIn

ColdReset*

Reset*

MasterOut

SyncOut

TClock

RClock

TDS

Undefined

Undefined

Undefined

Undefined

VCC

TMDS

> 100ms

TDS

256 MClk cycles

5.25V
4.75V

TDS> 100ms

Bit 0

TMDH

> 64K MClk cycles

Bit

TDS

Bit 1

256

cycles

MClk

Reset*

(MClk)

255

> 1024 MClk cycles before asserting ColdResetB

(W
aveform

s continued on figure 1b)

See Errata # 54

See Errata # 54

6

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

Figure 1b: Power-on Reset or Cold Reset - Workaround for Bug# 22 (cont.)

M
as

te
rC

lo
ck

V
C

C
O

K

M
od

eC
lo

ck

M
od

eI
n

C
ol

dR
es

et
*

R
es

et
*

M
as

te
rO

ut

S
yn

cO
ut

T
C

lo
ck

R
C

lo
ck

T
D

S

U
nd

ef
in

ed

U
nd

ef
in

ed

V
C

C

T
D

S

C
on

tin
ue

s
w

ith
 th

e
pe

rio
d

=
 2

56
 M

C
lk

 c
yc

le
s

T
D

S

>
 6

4
M

C
lk

 c
yc

le
s

>
 6

4
M

C
lk

 c
yc

le
s

R
es

et
*

(M
C

lk
)

(Waveform continued from figure 1a)

Lo
gi

c
’0

’

T
C

lk
 &

 R
C

lk
 S

ta
bl

e

(For all div. modes assume the rising

af
te

r
 6

4
M

C
lk

 c
yc

le
s

edges are synchronized to this
 edge of the MasterClock)

7

February 9, 1994R4400 PC, R4400 SC Errata, Processor Revision 1.0

23. R4400PC, R4400SC: The CacheOp instructions are encoded as a primary d-cache stall (’a’) on the status
pins regardless of the cache (I, D, SI or SD) it is operating on. Also, the final run cycle of any Cache Op
shows up as code ’1’ on the status pins. This means that there is no way to differentiate between the CacheOp
and a load instruction that had a primary data cache miss by looking at the status pins.

Workaround: Workaround: There is no workaround for this bug.

